

Technical Product Notes

The Use of EodHyst at the NV16KAC & NV12KAC Explained

DATE CREATED:	TN NUMBER:	PREPARED BY:
9/19/2025	TN-NV16KAC-004	Patrick Honegger

In the context of hybrid solar inverters, **EoDHyst** refers to **End-of-Discharge Hysteresis**.

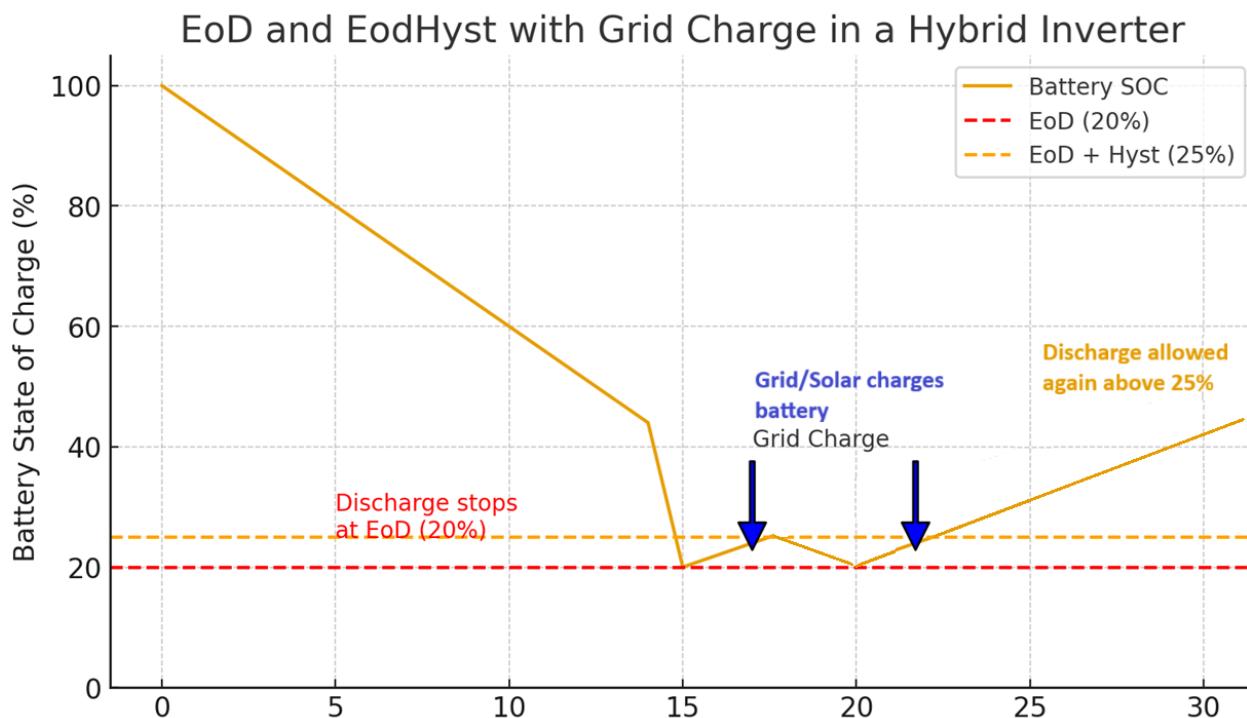
- **EoD (End of Discharge)** is the programmed lower battery limit (e.g., 20% SOC or a voltage threshold) at which the inverter stops discharging the battery to protect it.
- **Hysteresis (Hyst)** adds a margin or buffer before the inverter allows the next action (like re-enabling discharge or starting grid charge).

How it works with Grid Charge:

1. Battery Discharge Stops at EoD
 - Set the EoD to 20% SOC. When the battery reaches the EoD setting (20% SOC), the inverter stops using battery power to supply the loads, protecting the battery from further discharge.
2. EodHyst Defines the Recovery Band
 - Set the EoD to 5%. In this case, the inverter will wait until the battery rises above 20% before discharging again, rather than starting immediately.”
 - Instead of starting immediately, the battery must recharge up to **EoD + EodHyst** (20% + 5% = 25%) before discharge is re-enabled.

Technical Product Notes

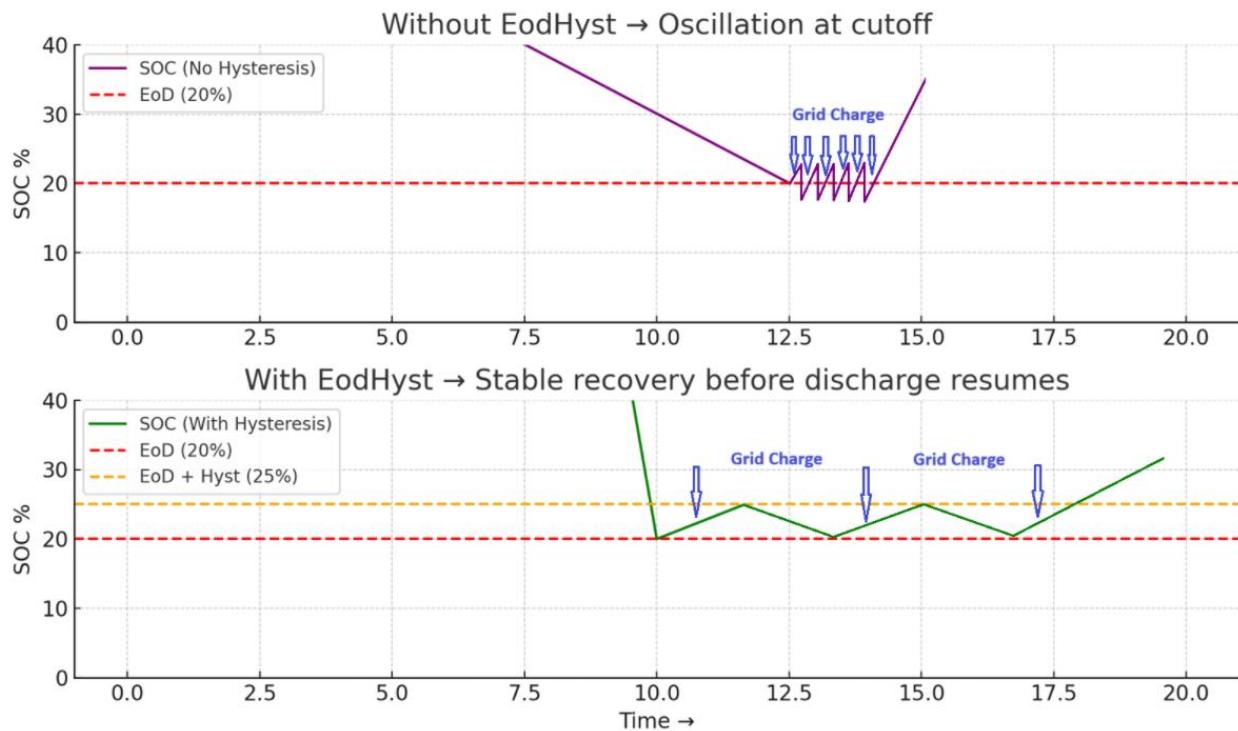
3. Relation to Grid Charging


- If grid charging is allowed, the inverter may use the grid to push the battery above this hysteresis point.
- Without hysteresis, the inverter could toggle between charging/discharging at the EoD line.
- With hysteresis, it ensures a stable switch: discharge only resumes once the battery has been sufficiently charged above the cutoff.

Conclusion:

EodHyst (End-of-Discharge Hysteresis) is the safety buffer that prevents the inverter from rapidly toggling between discharging and charging near the End-of-Discharge threshold. When grid charge is enabled, the grid may be used to top the battery up past the hysteresis margin before the inverter allows discharge again.

Technical Product Notes


Diagram #1 showing how EoD (End of Discharge) and EodHyst work with grid charging in a hybrid inverter.

- The battery discharges down to 20% (EoD) → inverter stops discharging
- The grid or solar charges the battery backup (blue arrow)
- Once the SOC passes 25% (EoD + Hyst), the inverter allows discharge again.

Technical Product Notes

Diagram #2 shows the effect of battery charging and discharging with and without EodHyst.

Without hysteresis (top) – the SOC bounces around the 20% cutoff, making the inverter oscillate on/off between discharge and grid charge

With EodHyst (bottom) – discharge is blocked at 20% until the battery is recharged to above 25%, creating a stable transition with no oscillation

Technical Product Notes

Typical EodHyst Settings

- Range: Most inverter menus allow 2% → 10% of battery SOC (or the equivalent in voltage)
- Default: Many brands ship with ~5% hysteresis

Trade-offs When Setting EodHyst

1. Too Low (e.g., 1–2%)
 - Risk of “oscillating” → inverter may rapidly toggle between charging and discharging near the EoD point
 - This may overwork relays and MOSFETs and trigger unnecessary grid draw cycles.
2. Too High (e.g., 8–10%)
 - Provides stability but reduces usable battery capacity → you’re forced to recharge more before discharge resumes
 - May cause more frequent grid charging if backup reserve is small
3. Balanced (e.g., 4–6%)
 - Smooth operation with minimal toggling
 - Protects the battery while still allowing reasonable usable capacity
 - This is the “sweet spot” most installers use.

Practical Example

Technical Product Notes

- EoD = 20%
- EodHyst = 5%
- Discharge stops at 20%
- The battery must be recharged (via solar or grid) to 25% before discharging resumes.
Note: This ensures stability and prolongs battery and inverter life.

Recommended EodHyst Settings

System Focus	Typical EoD Setting	Recommended EodHyst	Why This Range Works
Backup-first (resilience)	20–30% SOC reserve	6–10%	Keeps a healthy buffer so the inverter doesn't oscillate during outages. Ensures the battery is "charged up" enough before discharge resumes.
Self-consumption-first (maximize solar use)	10–20% SOC reserve	3–5%	Smaller hysteresis means more usable battery capacity day-to-day but still prevents rapid toggling.
Battery longevity priority	20–30% SOC reserve	5–8%	Strikes a balance avoids deep cycling stress while keeping transitions stable.
Aggressive grid support / peak shaving	10–15% SOC reserve	2–4%	Keeps the battery actively cycling against the grid, but higher risk of toggling if too low.

Tip: Lithium (LFP) batteries respond well to smaller hysteresis (3–5%), since voltage vs. SOC curve is flat.

Version	Revision Date	Brief Description of Change
V1.1	12/12/2025	Document Grammer Adjustments and Title Change